

    
      
          
            
  
Welcome to neo4j-connector’s documentation!


Contents:


	neo4j package
	Module contents





	README
	Background

	Example

	Installation

	Github

	Documentation





	Changelog
	1.1.0

	1.0.1

	1.0.0












Indices and tables


	Index


	Search Page








          

      

      

    

  

    
      
          
            
  
neo4j package


Module contents

This module implements access to the Neo4j HTTP API [https://neo4j.com/docs/http-api/3.5/] using the requests
library.


	
class neo4j.Connector(host: str = 'http://localhost:7474', credentials: Tuple[str, str] = ('neo4j', 'neo4j'), verbose_errors=False)

	Bases: object

Class that abstracts communication with neo4j into up-front setup and then executes one or more
Statement. The connector doesn’t maintain an open connection and thus doesn’t need to be closed after
use.


	Parameters

	
	endpoint (str) – the fully qualified endpoint to send messages to


	credentials (tuple[str, str]) – the credentials that are used to authenticate the requests


	verbose_errors (bool) – if set to True the Connector prints Neo4jErrors messages and codes to
the standard error output in a bit nicer format than the stack trace.








Example code:

>>> # default connector
>>> connector = Connector()





>>> # localhost connector, custom credentials
>>> connector = Connector(credentials=('username', 'password'))





>>> # custom connector
>>> connector = Connector('http://mydomain:7474', ('username', 'password'))






	
default_credentials = ('neo4j', 'neo4j')

	




	
default_host = 'http://localhost:7474'

	




	
default_path = '/db/data/transaction/commit'

	




	
static make_batches(statements: List[neo4j.Statement], batch_size: int = None) → List[T]

	




	
post(statements: List[neo4j.Statement])

	Method that performs an HTTP POST with the provided Statements and returns the parsed data structure
as specified in Neo4j’s documentation [https://neo4j.com/docs/http-api/3.5/http-api-actions/begin-and-commit-a-transaction-in-one-request/].
This specifically includes the metadata per row and has a separate entry for the result names and the actual
values.


	Parameters

	statements (list[Statement]) – the statements that are POST-ed to Neo4j



	Returns

	the parsed Neo4j HTTP API response



	Return type

	dict



	Raises

	Neo4jErrors





Example code:

>>> cypher = "MATCH (n:node {uuid: {uuid}}) RETURN n"
>>> statements = [Statement(cypher, {'uuid': uuid}) for uuid in ['123abc', '456def']
>>> statements_responses = connector.run_multiple(statements)
>>> for result in statements_responses['results']:
>>>     for datum in result['data']:
>>>         print(datum['row'][0]) #n is the first item in the row










	
run(cypher: str, parameters: dict = None)

	Method that runs a single statement against Neo4j in a single transaction. This method builds the
Statement object for the user.


	Parameters

	
	cypher (str) – the Cypher statement


	parameters (dict) – [optional] parameters that are merged into the statement at the server-side. Parameters
help with speeding up queries because the execution plan for identical Cypher statements is cached.






	Returns

	a list of dictionaries, one dictionary for each row in the result. The keys in the dictionary
are defined in the Cypher statement



	Return type

	list[dict]



	Raises

	Neo4jErrors





Example code:

>>> # retrieve all nodes' properties
>>> all_nodes = [row['n'] for row in connector.run("MATCH (n) RETURN n")]





>>> # single row result
>>> node_count = connector.run("MATCH () RETURN COUNT(*) AS node_count")[0]['node_count']





>>> # get a single node's properties with a statement + parameter
>>> # in this case we're assuming: CONSTRAINT ON (node:node) ASSERT node.uuid IS UNIQUE
>>> single_node_properties_by_uuid = connector.run("MATCH (n:node {uuid: {uuid}}) RETURN n", {'uuid': '123abc'})[0]['n']










	
run_multiple(statements: List[neo4j.Statement], batch_size: int = None) → List[List[dict]]

	Method that runs multiple Statements against Neo4j in a single transaction or several batches.


	Parameters

	
	statements (list[Statement]) – the statements to execute


	batch_size (int) – [optional] number of statements to send to Neo4j per batch. In case the batch_size is
omitted (i.e. None) then all statements are sent as a single batch. This parameter can help make large
jobs manageable for Neo4j (e.g not running out of memory).






	Returns

	a list of statement results, each containing a list of dictionaries, one dictionary for
each row in the result. The keys in the dictionary are defined in the Cypher statement. The statement
results have the same order as the corresponding Statements



	Return type

	list[list[dict]]



	Raises

	Neo4jErrors





Example code:

>>> cypher = "MATCH (n:node {uuid: {uuid}}) RETURN n"
>>> statements = [Statement(cypher, {'uuid': uuid}) for uuid in ['123abc', '456def']
>>> statements_responses = connector.run_multiple(statements)
>>> for statement_responses in statements_responses:
>>>     for row in statement_responses:
>>>         print(row)





>>> # we can use batches if we're likely to overwhelm neo4j by sending everything in a single request
>>> # note that this has no effect on the returned data structure
>>> cypher = "MATCH (n:node {uuid: {uuid}}) RETURN n"
>>> statements = [Statement(cypher, {'uuid': uuid}) for uuid in range(1_000_000)
>>> statements_responses = connector.run_multiple(statements, batch_size=10_000)
>>> for statement_responses in statements_responses:
>>>     for row in statement_responses:
>>>         print(row)





>>> # we can easily re-use some information from the statement in the next example
>>> cypher = "MATCH (language {name: {name}})-->(word:word)) RETURN word"
>>> statements = [Statement(cypher, {'name': lang}) for lang in ['en', 'nl']
>>> statements_responses = connector.run_multiple(statements)
>>> for statement, responses in zip(statements, statements_responses):
>>>     for row in responses:
>>>         print("{language}: {word_lemma}".format(language=statement['parameters']['lang'], word=row['word']['lemma']))














	
class neo4j.Neo4jError

	Bases: neo4j.Neo4jError

namedtuple that contains the code and message of a Neo4j error


	Parameters

	
	code (str) – Error status code as defined in https://neo4j.com/docs/status-codes/3.5/


	message (str) – Descriptive message. For Cypher syntax errors this will contain a separate line (delimited by \n)
that contains the ‘^’ character to point to the problem








Example code:

>>> print(neo4j_error.code, file=sys.stderr)
>>> print(neo4j_error.message, file=sys.stderr)










	
exception neo4j.Neo4jErrors(errors: List[dict])

	Bases: Exception

Exception that is raised when Neo4j responds to a request with one or more error message. Iterate over this
object to get the individual Neo4jError objects


	Parameters

	errors (list(dict)) – A list of dictionaries that contain the ‘code’ and ‘message’ properties





Example code:

>>> try:
>>>     connector.run(...)
>>> except Neo4jErrors as neo4j_errors:
>>>     for neo4j_error in neo4j_errors:
>>>         print(neo4j_error.code, file=sys.stderr)
>>>         print(neo4j_error.message, file=sys.stderr)










	
class neo4j.Statement(cypher: str, parameters: dict = None)

	Bases: dict

Class that helps transform a cypher query plus optional parameters into the dictionary structure that Neo4j
expects. The values can easily be accessed as shown in the last code example.


	Parameters

	
	cypher (str) – the Cypher statement


	parameters (dict) – [optional] parameters that are merged into the statement at the server-side. Parameters help
with speeding up queries because the execution plan for identical Cypher statements is cached.








Example code:

>>> # create simple statement
>>> statement = Statement("MATCH () RETURN COUNT(*) AS node_count")





>>> # create parametrized statement
>>> statement = Statement("MATCH (n:node {uuid: {uuid}}) RETURN n", {'uuid': '123abc'})





>>> # create multiple parametrized statements
>>> statements = [Statement("MATCH (n:node {uuid: {uuid}}) RETURN n", {'uuid': uuid}) for uuid in ['123abc', '456def']]





>>> # print individual Statement values
>>> statement = Statement("MATCH (n:node {uuid: {uuid}}) RETURN n", {'uuid': '123abc'})
>>> print("Cypher statement: {}".format(statement['statement']))
>>> print("Parameters dict: {}".format(str(statement['parameters']))















          

      

      

    

  

    
      
          
            
  
README

This library contains everything you need to execute single-request transactions for Neo4j 3.0 and above through its
HTTP API.


Background

Research into the speed of performing ETL and batch-type actions on Neo4j showed that using a large, single-request
transaction POST-request through Neo4j’s HTTP API outperforms other currently available libraries for this use-case
(e.g. the official ‘neo4j-driver’ and ‘py2neo’). The goal of this connector is to provide convenience methods and
classes that abstract away the boilerplate communication code.


	Community thread about the difference in performance between drivers:

	https://community.neo4j.com/t/barebones-http-requests-much-faster-than-python-neo4j-driver-and-py2neo








Example

import neo4j

connector = neo4j.Connector('http://localhost:7474', ('neo4j','neo4j'))
response = connector.run("""MATCH () RETURN COUNT(*) as node_count""")
first_row = response[0]
print(first_row['node_count'])








Installation

To install the latest stable version, use:

pip install neo4j-connector








Github

This library lives at https://github.com/textkernel/neo4j-connector. Suggestions, bug-reports and pull requests are
welcome there.




Documentation

The documentation (including changelog) lives at https://neo4j-connector.readthedocs.io







          

      

      

    

  

    
      
          
            
  
Changelog


1.1.0


	the run_multiple connector method now takes the batch_size parameter. If the method gets more
statements than batch_size then the statements are split over multiple HTTP requests. The run_multiple
method still returns a single list with the responses from all batches. This parameter can help make large jobs
manageable for Neo4j (e.g not running out of memory).







1.0.1


	Improved documentation







1.0.0


	Initial release










          

      

      

    

  

    
      
          
            

   Python Module Index


   
   n
   


   
     		 	

     		
       n	

     
       	
       	
       neo4j	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | M
 | N
 | P
 | R
 | S
 


C


  	
      	Connector (class in neo4j)


  





D


  	
      	default_credentials (neo4j.Connector attribute)


  

  	
      	default_host (neo4j.Connector attribute)


      	default_path (neo4j.Connector attribute)


  





M


  	
      	make_batches() (neo4j.Connector static method)


  





N


  	
      	neo4j (module)


  

  	
      	Neo4jError (class in neo4j)


      	Neo4jErrors


  





P


  	
      	post() (neo4j.Connector method)


  





R


  	
      	run() (neo4j.Connector method)


  

  	
      	run_multiple() (neo4j.Connector method)


  





S


  	
      	Statement (class in neo4j)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to neo4j-connector’s documentation!
        


        		
          neo4j package
          
            		
              Module contents
            


          


        


        		
          README
          
            		
              Background
            


            		
              Example
            


            		
              Installation
            


            		
              Github
            


            		
              Documentation
            


          


        


        		
          Changelog
          
            		
              1.1.0
            


            		
              1.0.1
            


            		
              1.0.0
            


          


        


      


    
  

_static/ajax-loader.gif





_static/minus.png





_static/plus.png





_static/file.png





_static/up.png





_static/up-pressed.png





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





